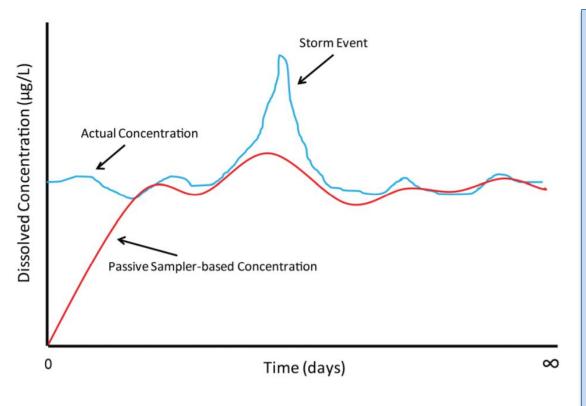
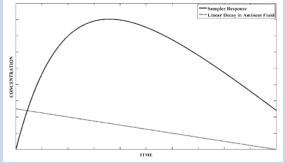
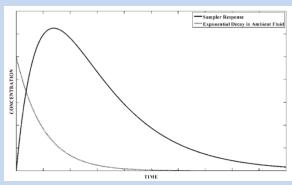


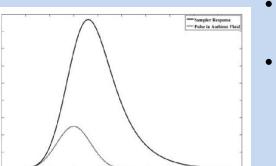
What Does Time-Integration Really Mean for Passive Sampling?

Oindrila Ghosh, Songjing Yan, Mandar Bokare, Upal Ghosh


Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County




LITERATURE REVIEW & AII



Exponential Decay

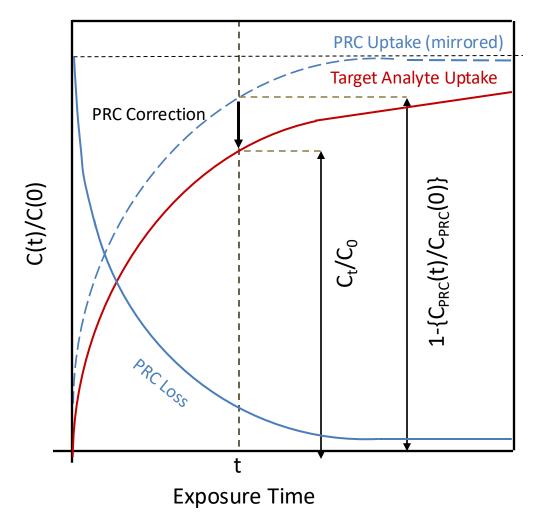
Pulse

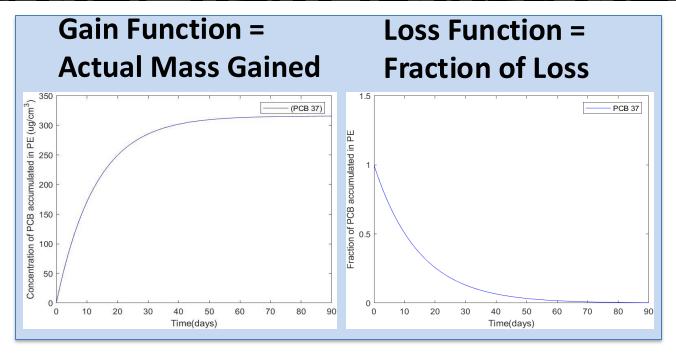
- Characteristic of ambient concentration
- Passive sampler-based water concentration (Analytical solution)

Hawker et al., 2009

AIM

- In the real environment, water concentrations of these HOCs vary temporally.
- Important for ecological exposure assessment.
- How well passive sampler concentrations represent the time-averaged concentration over an entire deployment period?


INITIAL CONDITIONS: Water concentration varies from 10ng/L to 1ng/L.



METHOD: PRC CORRECTION

PERFORMANCE REFERENCE COMPOUND CORRECTION FOR EQUILIBRIUM

Corrected Mass of PCB Uptake = $\frac{Actual\ Mass\ Gained}{Fraction\ of\ Loss}$

$$C_{w} = \frac{Corrected\; Mass\; of\; PCB\; Uptake}{K_{PEW}}$$

FICK'S DIFFUSION MODEL

Governing Equation: System of well mixed infinite water bath

Eq 1
$$\frac{\partial C_{PE}}{\partial t} = D_{PE} \frac{\partial^2 C_{PE}}{\partial x^2}$$

for
$$-l < x < l$$

Eq 1
$$\frac{\partial C_{PE}}{\partial t} = D_{PE} \frac{\partial^2 C_{PE}}{\partial x^2}$$
Eq 2
$$\frac{\partial C_W}{\partial t} = D_W \frac{\partial^2 C_W}{\partial x^2}$$

for
$$-l > x > -(l+b)$$
 and $1 < x < (l+b)$

Eq 3

Boundary Conditions:

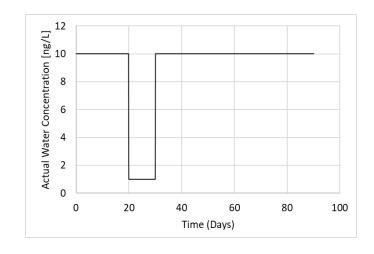
At the interface of the PE and water, the diffusive fluxes match so that mass is conserved

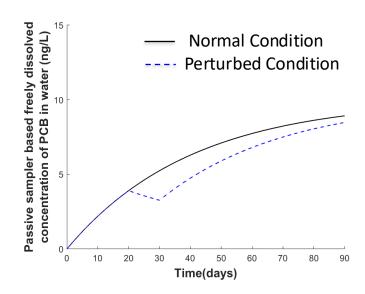
$$D_{PE} \frac{\mathrm{d}C_{PE}}{\mathrm{d}x} = D_W \frac{\mathrm{d}C_W}{\mathrm{d}x}$$

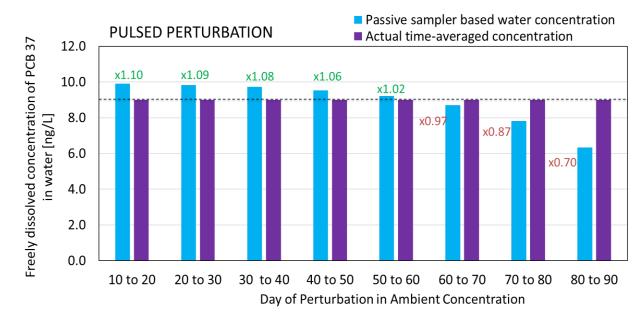
for
$$x = l$$
 and $x = -l$

local equilibrium distribution

$$C_{PE} = K_{PEW} C_W$$

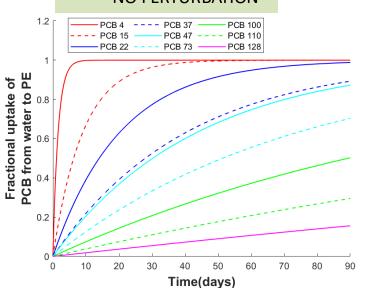

at
$$x = l$$
 and $x = -l$



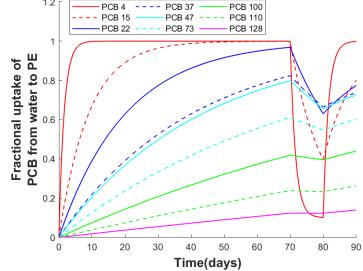

CoinW; infinite bath boundary condition.

Impact of varying day of introduction of perturbation in ambient water concentration.

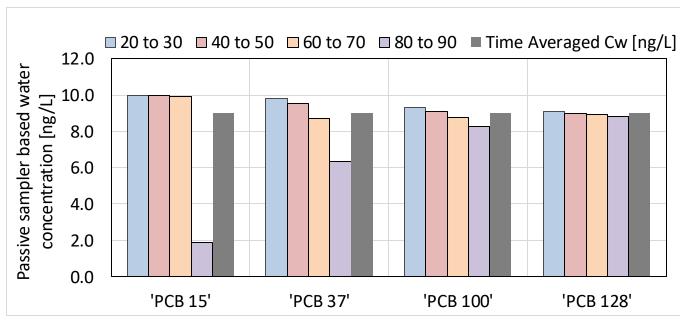
- Time-averaged C_w stays constant
- Crossover from overestimation to underestimation
- Time period of Integration, PCB 37: 31 days.

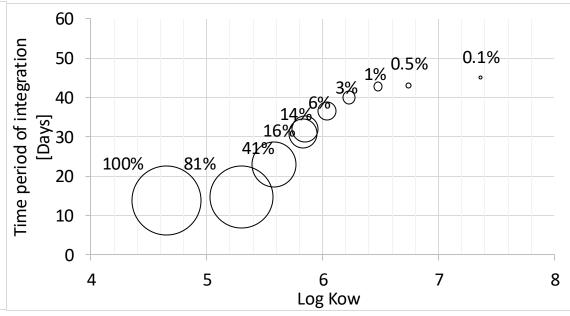


Impact of varying congener hydrophobicity under perturbed ambient water concentration.

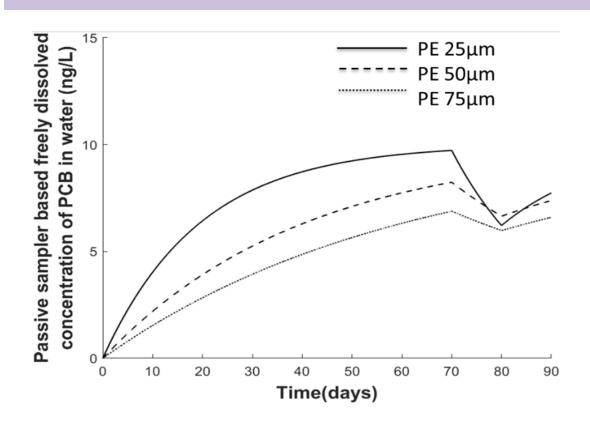

Serial No.	# CI	PCB	Molecular Weight 1	Log D _{PE} (cm ² /s) ¹	D _W (cm ² /s) ²	Log K _{OW} ³	Log K _{PE-W} ⁴	
INO.	atoms	congener	weight	(01175)	DW (CIII-/5) -	Log Now	INPE-W	
1	2	PCB 4	223.1	-8.64	5.81E-06	4.65	4.23	
2	2	PCB 15	223.1	-8.64	5.81E-06	5.3	4.99	
3	3	PCB 22	257.5	-8.81	5.24E-06	5.58	5.32	
4	3	PCB 37	257.5	-8.81	5.24E-06	5.83	5.62	
5	4	PCB 47	291.9	-8.98	4.80E-06	5.85	5.64	٦,
6	4	PCB 73	291.9	-8.98	4.80E-06	6.04	5.87	
7	5	PCB 100	326.4	-9.16	4.43E-06	6.23	6.09	
8	5	PCB 110	326.4	-9.16	4.43E-06	6.48	6.39	
9	6	PCB 128	360.8	-9.33	4.13E-06	6.74	6.69	

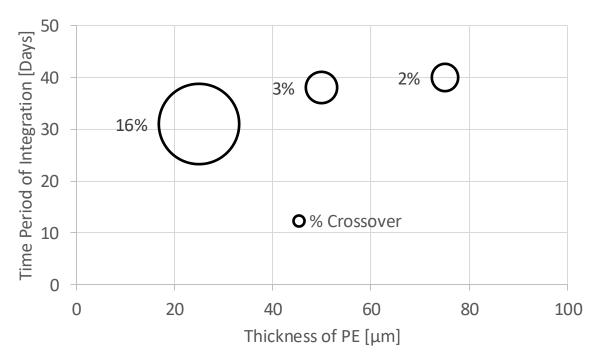
- K_{OW} , K_{PW} is function of hydrophobicity.
- D_{PE} , D_{W} of same homolog group congeners are same.
- lower homologs reach equilibrium faster.
- lower homologs are more sensitive to the ambient perturbations.




PULSED PERTURBATION ON DAY 70

Impact of (varying congener hydrophobicity+ varying day of introduction of perturbation)





Congeners have varying levels of over or underprediction trends:

- function of their hydrophobicity and
- > consequent sensitivity to fluctuations in ambient concentrations.
- The percentage cross-over for each congener: estimate of the sensitivity of the congener to the pulse (Size of Bubbles)
- Increasing hydrophobicity -> increasing time-period of integration -> decreasing sensitivity

Impact of varying PE thickness on the uptake of PCB 37

A thicker polymer is thus more resistive to perturbations in the ambient concentration.

WUMBC

CONCLUSION

- Time period of integration for passive samplers under fluctuating ambient concentrations of PCBs in water.
- Minimum amount of time required by a congener to represent true ambient water concentrations:
 - Hydrophobicity of congener
 - Thickness of passive sampler
- Range: 14-15 days for a dichlorobiphenyl to 43-45 days for a hexachlorobiphenyl.
- Perturbations can be multiple and of varying intensities. A simple case chosen for this study.
- Real measurements involve errors from correction for equilibrium.

THANK YOU

